
The "Gotchas" of Splunk!

Simple mistakes to make that are easy to overlook,

difficult to diagnose, and cause significant problems

which, in the worst-case scenario, could even get you fired!

AKA

How I came to leave my previous employment and start my own company!

Copyright © 2015 Splunxter, Inc. (http://www.Splunxter.com)
and Gregg Woodcock Woodcock@Splunxter.com

1

http://www.splunxer.com/
mailto:Woodcock@Splunxter.com

What's a "Gotcha" anyway?

"Reports that say that something hasn't happened are always interesting to

me, because as we know, there are known knowns - there are things we

know we know. We also know there are known unknowns - that is to say we

know there are some things we do not know. But there are also unknown

unknowns - the ones we don't know we don't know. And if one looks

throughout the history of our country and other free countries, it is the latter

category that tend to be the difficult ones."

– United States Secretary of Defense Donald Rumsfeld in answer to a

question at a U.S. Department of Defense (DoD) news briefing on February

12, 2002 about the lack of evidence linking the government of Iraq with the

supply of weapons of mass destruction (WoMD) to terrorist groups.

2

Gotcha #1: The negative & insensitive world of SPL

SPL Result ("NOT" is NOT the same as "!=")

NOT gregg

NOT "Gregg"

NOT GrEgG

Drops events containing string 'gregg' any where/case.

(Keeps events only if '_raw' does NOT contain 'gregg';

some fields may have value 'gregg'.)

NOT user=gregg

NOT user="gregg"

NOT user=gReGg

Drops events where field 'user' exists AND has value 'gregg'

BUT ALSO keeps events where field 'user' does not exist!

(Drops events even if '_raw' contains 'gregg'.)

user != gregg

user != GregG

Drops events where field 'user' exists & has value 'gregg'

BUT ALSO drops events where field 'user' does not exist!

(Drops events even if '_raw' contains 'gregg'.)

NOT "user=gregg"

NOT "User=GrEgg"

Drops events containing string 'user=gregg' any where/case.

(Keeps events where field 'user' has value 'gregg',

unless '_raw' also contains 'user=gregg'.)
3

Gotcha #2: Where is the Sensitivity?

THE SETUP: You are trying to count very particular events:

sourcetype=MyEvents MyField= "MyCaseSensitiveValue" | stats count

THE PROBLEM: You are receiving too many results and your investigation

reveals it is because your base search is polluted by false-positive (case-

insensitive) matches.

4

THE SOLUTION: Use CASE() or any other post-pipe comparison/filter:

sourcetype=MyEvents MyField=CASE(MyCaseSensitiveValue)

sourcetype=MyEvents MyField="MyCaseSensitiveValue"

| where MyField="MyCaseSensitiveValue"

sourcetype=MyEvents MyField="MyCaseSensitiveValue"

| where match(MyField, "MyCaseSensitiveValue")

sourcetype=MyEvents MyField="MyCaseSensitiveValue"

| regex MyField="MyCaseSensitiveValue"

sourcetype=MyEvents MyField="MyCaseSensitiveValue"

| eval caseInsensitiveMatch=if(MyField="MyCaseSensitiveValue",1,0)

| search caseInsensitiveMatch=1

THE EXPLANATION: Splunk is case-sensitive for string-literal values (not

field names) everywhere except in the 'search' command (base search).

NOTE: The first method (using "CASE()") is vastly superior to the others.

Gotcha #2: Where is the Sensitivity?

5

Gotcha #3: SPL can't escape from wildcards

THE SETUP: You are trying to filter out header/comment lines that are full of

asterisks ("**********"):

sourcetype=MyEvents NOT **********

sourcetype=MyEvents NOT "**********"

sourcetype=MyEvents NOT '**********'

sourcetype=MyEvents NOT **********

sourcetype=MyEvents NOT "**********"

sourcetype=MyEvents NOT '**********'

THE PROBLEM: For some reason, no matter what you do, everything stays or

everything disappears!
6

Gotcha #3: SPL can't escape from wildcards

THE SOLUTION: You must use "match" (RegEx), "like" (SQL), or similar

streamable command function instead:

sourcetype=MyEvents | where NOT match(_raw, "^**********")

sourcetype=MyEvents | where NOT like(_raw, "**********%")

sourcetype=MyEvents | regex _raw!="^**********"

THE EXPLANATION: I don't know the reasoning behind it but asterisks ("*")

cannot be escaped in the general base search (they will always be treated as

wildcard characters).

7

Gotcha #4: Wildcard-ignorant & literal "eval"

THE SETUP: You have been asked to find out how many times something

happened in your data:

sourcetype=MyEvents | stats count count(eval(MyField="123*"))

AS MyCount | eval MyPct = 100 * MyCount / count

THE PROBLEM: For some reason, the number is way too low. Worse yet,

when you run the math directly (without eval), you get a much larger answer

that seems correct:

sourcetype=MyEvents MyField="123*" | stats count

8

Gotcha #4: Wildcard-ignorant & literal "eval"

THE SOLUTION: With "eval" you may NEVER use wildcards; you must use

"match" (RegEx), or "like" (SQL) instead:

sourcetype=MyEvents | stats count count(eval(match(MyField, "^123*")))

AS MyCount | eval MyPct = 100 * MyCount / count

sourcetype=MyEvents | stats count count(eval(like(MyField, "123%")))

AS MyCount | eval MyPct = 100 * MyCount / count

THE EXPLANATION: Splunk "eval" and "where" always treat asterisks ("*") as

string literals (which is why you do not get an error, just unexpectedly incorrect

results), never as wildcards. This is the converse of the previous gotcha!

9

Gotcha #5: It's the same 'case' even 'if' you can't see 'eval'!

THE SETUP: You have been asked to find out how many times something

happened in your data:

sourcetype=MyEvents

| eval type= case(MyField="123*", "123", true(), "Other")

| stats count AS MyCount BY type

THE PROBLEM: For some reason, everything buckets to "Other". Strangely,

when you run the math directly (without eval), you get a non-zero answer that

seems correct:

sourcetype=MyEvents MyField="123*" | stats count

10

Gotcha #5: It's the same 'case' even 'if' you can't see 'eval'!

THE SOLUTION: With "case" (and "if") you may NEVER use wildcards; use

"match" (RegEx), or "like" (SQL) instead:

sourcetype=MyEvents | eval type=case(match(MyField, "^123*"), "123",

true(), "Other") | stats count AS MyCount BY type

sourcetype=MyEvents | eval type=case(like(MyField, "123%"), "123",

true(), "Other") | stats count AS MyCount BY type

THE EXPLANATION: The splunk "case" and "if" commands are just like the

"eval" command and in fact are driven by the same "eval" and "where" code.

This is exactly the same as the previous gotcha!

11

THE SETUP: A search has been saved and scheduled to run every day, in the

middle of the night, over a time range that covers the previous day.

sourcetype=MyEvents earliest=-1d@d latest=@d

THE PROBLEM: Some details of this report are being compared against a

report that is generated from a non-splunk system-of-record that is using the

same event data (or legitimate analog) and same time range, but the numbers,

although always very close, never exactly match.

Gotcha #6: Time, time, what is time?

12

THE SOLUTION: Have the user that owns the saved search change his "Time

zone" setting.

THE EXPLANATION: Every scheduled job runs AS A USER (the user that

saved the search and owns it). Each user has a "Time zone" setting inside his

profile (under My User Name -> Edit account -> Time zone). If, for example, you

tell splunk to run a search at "3AM", you are actually saying run it at "3AM as

defined by this user's Time zone setting" and, much more importantly, over the

"day" (-1d@d -> 0d@d) also as defined by that user's "Time zone" setting. The

question is: what (or rather, "when") is "a day" (as regards the snap-to part)? If

the user uses "CST", then the window that defines "all of yesterday" is several

hours different than the window that would be defined if he had used "UTC".

This is an even bigger problem if the saved search is a populating search for a

Summary Index!

Gotcha #6: Time, time, what is time?

13

THE SETUP: You have many reports that are being generated from saved

searches and these have always been just fine.

THE PROBLEM: After a major restructuring that included both layoffs and

personnel realignments, some reports are returning bad results. There are even

rumors of sabotage by disgruntled employees that were adversely effected! You

find this hard to believe but why are so many reports doing such strange things?

Gotcha #7: Ghost in the machine!

14

THE SOLUTION: Repair any saved searches that are scheduled but no longer

have proper ownership/permission (each owner must have the appropriate

roles: those that the user previously had). Use this search to find them:

| rest /servicesNS/-/-/saved/searches

| where is_scheduled=1 AND disabled=0 AND

(isnull(next_scheduled_time) OR ($eai:acl.owner$="nobody"))

| fields eai:acl.owner cron_schedule is_scheduled eai:acl.app

next_scheduled_time title updated splunk_server disabled

THE EXPLANATION: Scheduled searches run in context of an owner who
must exist and have appropriate roles. If a search is "active" and "scheduled"
but has no "next_scheduled_time" or "nobody" owns it, then you have trouble.
If it is owned by "nobody" then the user that originally owned it has been
deleted and the permissions he had (determined by his "roles", frequently
matched to Active Directory roles) are no longer in place so the search may
behave differently now than it did previously when run as the proper owner.

Gotcha #7: Ghost in the machine!

15

THE SETUP: More and more, you are getting reports of "bad searches", or

queries that "don't match results from a separate run". In every case, when you

re-type the search string manually, it works. Visually the strings are identical, but

apparently there are invisible characters introduced at some point in the crafting

of the string (most likely through cut-and-paste) the break it.

THE PROBLEM: When the search fails completely, the problem is apparent and

it gets discovered and fixed. Sometimes, however, it's a "silent failure" and

returns wrong results that are not easily noticed until "too late". For example, if

the search has a field filter in like "myField!=someValue" but your search does

not return events that you know exist, inspect the search job. The Job Inspector

may reveal that Splunk used "myField!=someValue\xa0" instead (where the

character "\xa0" is unprintable/invisible everywhere except in the text shown by

the Job Inspector, which shows a hexadecimal encoding of it).

Gotcha #8: What you don't see can hurt you!

16

THE SOLUTION: Find the broken searches and fix each one by re-typing it

manually:

| rest /servicesNS/-/-/saved/searches/

| rex field=search "(?<NonStandardCharacter>[^ -~\r\n]+)"

| where isnotnull(NonStandardCharacter)

| rex field=search "(?<AroundNonStandardCharacter>.{4}[^ -~\r\n]+.{4})"

| search NOT title="DMC Asset - Build Full"

| fields title eai:acl.owner search

| rename title AS Name eai:acl.app AS SplunkAppLocation

search AS SearchQuery

THE EXPLANATION: This search finds search strings with unprintable

characters in the SPL. This should probably be scheduled as an alert and also

run against recently run searches (not just saved searches) with the appropriate

admin response, respectively: either saved search repair or user education.

Gotcha #8: What you don't see can hurt you!

17

Gotcha #9: Where is (literally) not Search

THE SETUP: You are trying to count very particular events:

sourcetype=MyEvents MyField="*" "Other Field" ="*"

| where MyField="Other Field" | stats count

THE PROBLEM: You are receiving counts that are WAY off and your

investigation reveals it is because your results are missing most of your data

that you know is there.

18

THE SOLUTION: Enclose your multi-word field name inside dollar-signs or

single-quotes (I prefer the former):

sourcetype=MyEvents MyField="*" "Other Field" ="*"

| where MyField=$Other Field$ OR MyField='Other Field' | stats count

THE EXPLANATION: The main difference between 'where' and 'search'

(besides the nature of case-in/sensitivity previously discussed), is that 'where'

presumes the right-hand-value (RHV) of the equals-sign to be another field

name but it can be convinced otherwise if you enclose the RHV in double-

quotes. The problem here is that using enclosing double-quotes is also the

most common way to specify a mulit-word (whitespace polluted) field name, too!

So which interpretation wins out in this ambiguous case? In such a situation,

the RHV will always be treated as a string literal. To force it to be treated as a

field name instead, use the less-common (but also less-ambiguous) method of

specifying a field name of enclosing in bounding dollar-signs or single-quotes.

Gotcha #9: Where is (literally) not Search

19

THE SETUP: You need to create a new field by concatenating 2 other fields:

sourcetype=MyEvents

| eval CatField = MyField + OtherField

| stats count by CatField

THE PROBLEM: The report tested out just fine but some people are

complaining that they are seeing values for CatField that are impossible (for

which constituent field values for MyField and OtherField are impossible. Sure

enough, you see direct evidence of the same thing when you search for it

directly, with a search like this:

sourcetype=MyEvents

| eval CatField = MyField + OtherField

| stats values(MyField) values(OtherField) count by CatField

Gotcha #10: Don’t add my cat, Dog!

20

THE SOLUTION: Enforce concatenation with '.' or "tostring()":

sourcetype=MyEvents

| eval CatField = MyField . OtherField

| stats count by CatField

sourcetype=MyEvents

| eval CatField = tostring(MyField) + tostring(OtherField)

| stats count by CatField

THE EXPLANATION: The '+' operator has 2 functions: addition and

concatenation! So which interpretation wins out in this ambiguous case? In

such a situation, it will prefer to treat the arguments as numbers to be added and

will only concatenate if one (or both) is NaN (Not A Number). To force

concatenation, either use the less-common (but also less-ambiguous)

concatenation operator '. ' or typecast the arguments with "tostring()".

Gotcha #10: Don’t add my cat, Dog!

21

Wrapping It Up…
1. If you have any suggestions or further questions, you can:

• chat me as @woodcock in slack (https://splunk-usergroups.slack.com)

• email me @ Gotchas@Splunxter.com or Woodcock@Splunxter.com

2. A recording will be posted within 48-hours (after minor edits resulting
from comments received as a result of this session) at this link:

• https://www.youtube.com/channel/UCh2uSDo0N25vSYwhnitcINg

3. This is small portion of a 2-day class covering 50 Gotchas, but the
most-important ones are first so you got the "Best Of"! If you are
interested taking the entire class, email Gotchas@Splunxter.com

4. If you have experienced any of your own "Gotchas",
PLEASE DO SHARE YOUR STORY WITH ME
via any of the options on this slide!

22

https://splunk-usergroups.slack.com/
mailto:Gotchas@Splunxter.com
mailto:Woodcock@Splunxter.com
https://www.youtube.com/channel/UCh2uSDo0N25vSYwhnitcINg
mailto:Gotchas@Splunxter.com

